ВЯЖУЩИЕ ВЕЩЕСТВА, ИХ КЛАССИФИКАЦИЯ


Вяжущие вещества, их классификация

Вяжущие - вещества, способные затвердевать в результате физико-химических процессов. Переходя из тестообразного в камневидное состояние, вяжущее вещество скрепляет между собой камни либо зерна песка, гравия, щебня. Это свойство вяжущих используется для изготовления: бетонов, силикатного кирпича, асбоцементных и других необожжённых искусственных материалов; строительных растворов - кладочных, штукатурных и специальных.

Вяжущие вещества по составу делятся на:

1. неорганические (известь, цемент, строительный гипс, магнезиальный цемент, жидкое стекло и др.), которые затворяют водой (реже водными растворами солей). Включают: вяжущие воздушные, вяжущие гидравлические, вяжущие автоклавного твердения.

2. органические (битумы, дегти, животный клей, полимеры), которые переводят в рабочее состояние нагреванием, расплавлением или растворением в органических жидкостях.

 Вяжущие материалы, минеральные или органические строительные материалы, применяемые для изготовления бетонов>, скрепления отдельных элементов строительных конструкций, гидроизоляции и др.

 Неорганические (минеральные) вяжущие

Минеральные вяжущие (неорганические)материалы - тонкоизмельченные порошкообразные материалы (цементы, гипс, известь и др.), образующие при смешении с водой (в отдельных случаях - с растворами солей, кислот и щелочей) пластичную удобоукладываемую массу, затвердевающую в прочное камневидное тело и связывающую частицы твердых заполнителей и арматуру в монолитное целое. Твердение минеральных вяжущих материалов осуществляется вследствие процессов растворения, образования пересыщенного раствора и коллоидальной массы; последняя частично или полностью кристаллизуется. Делятся минеральные вяжущие материалы на гидравлические, воздушные, кислотоупорные, автоклавные и фосфатные.

Гидравлические вяжущие материалы при смешении с водой (затворении) твердеют и продолжают сохранять или наращивать свою прочность в воде. К ним относятся различные цементы и гидравлическая известь. Последняя получается обжигом мергелистых известняков при 900-1100°С; она состоит из 2CaO·SiO2, СаО·А12О3, СаО Fe2O3, CaO, MgO и кварца.

При твердении гидравлической извести происходят взаимодействие СаО с водой и СО2 воздуха и кристаллизация образующихся продуктов. Силикат, алюминат и феррат(II) Са, реагируя с водой, образуют соединения, придающие прочность изделиям из гидравлической извести. Гидравлические вяжущие материалы применяют в строительстве наземных, подземных и гидротехнических сооружений, подвергающихся постоянному воздействию воды.

Воздушные вяжущие материалы при смешении с водой твердеют и сохраняют прочность только на воздухе. К ним относятся воздушная известь, гипсово-ангидритные и магнезиальные вяжущие материалы. Первая получается обжигом материалов, содержащих СаСО3 (известняк, мел, известковый туф), при 1100-1300 °С; она состоит в основном из СаО (негашеная известь, или кипелка). При смешении с водой негашеная известь переходит в гашеную - Са(ОН)2, которая постепенно кристаллизуется и с СО2 воздуха образует СаСО3. Применяют воздушную известь для изготовления строительных растворов для кладки стен и штукатурки, не подвергающихся воздействию воды.

Гипсово-ангидритные вяжущие материалы получают обжигом природного гипса CaSO4·2H2O, ангидрита (CaSO4) или вторичных продуктов хим. промышленности, содержащих гипс (напр., фосфогипса, борогипса). В зависимости от условий термической обработки, скорости схватывания и твердения гипсовые вяжущие материалы могут быть:

1) быстросхватывающимися, быстротвердеющими и низкообжиговыми (температура обжига 110-190 °С); к ним относят гипс строительный (алебастр), формовочный, высокопрочный медицинский;

2) медленносхватывающимися и медленнотвердеющими высокообжиговыми (температура обжига 600-900 °С) - ангидритовые вяжущие (ангидритовый цемент), высокообжиговый гипс (эстрихгипс), отделочный гипсовый цемент.

Ангидритовые вяжущие используют после совместного помола с катализаторами твердения- известью, сульфатами, обожженным доломитом и др. Гипсово-ангидритные вяжущие материалы применяют для изготовления панелей, перегородок, плит, стеновых камней, архитектурно-декоративных изделий, моделей и форм в фарфоро-фаянсовой и керамической промышленности, ортопедических корсетов и др.

Магнезиальные вяжущие материалы получают обжигом природного магнезита или доломита при 750-800 °С. Каустическиймагнезит содержит в основном MgO, каустический доломит -MgO и СаСО3. В отличие от других минеральных вяжущих материалов их затворяют растворами MgCl2 или MgSO4; при этом образуется MgCl2·5Mg(OH)2·7H2O, который затем медленно переходит в MgCl2·3Mg(OH)2 и Mg(OH)2. Применяют магнезиальные вяжущие обычно в смеси с древесными заполнителями для изготовления строительных материалов – ксилолита и фибролита, термоизоляционных материалов, штукатурных растворов, искусственного - мрамора и др.

Кислотоупорные вяжущие материалы состоят в основном из кислотоупорного цемента, содержащего тонкоизмельченную смесь кварцевого песка и Na2SiF6; их затворяют, как правило, водными растворами силиката Na или К (см. Стекло растворимое), они длительно сохраняют свою прочность при воздействии кислот. При твердении осуществляется реакция:

Na2SiF6 + Н2О + 2Na2SiO3 -> 6NaF + 3Si(OH)4

Применяют кислотоупорные вяжущие материалы для производства кислотоупорных замазок (см. также Мастики), строительных растворов и бетонов при строительстве химических предприятий.

Вяжущие материалы автоклавного твердения состоят из известково-кремнеземистых и известково-нефелиновых вяжущих (известь, кварцевый песок, нефелиновый шлам) и твердеют при обработке в автоклаве (6-10 ч, давление пара 0,9-1,3 МПа). К таким вяжущим материалам относятся также песчанистые портландцемента и др. вяжущие на основе извести, зол и малоактивных шламов. Применяют в производстве изделий из силикатных бетонов (блоки, силикатный кирпич и др.).

Фосфатные вяжущие материалы состоят из спец. цементов; их затворяют Н3РО4 с образованием пластичной массы, постепенно затвердевающей в монолитное тело и сохраняющей свою прочность при температуpax выше 1000°С. Обычно используют титанофосфатный, цинкофосфатный, алюмофосфатный и др. цементы. Такие вяжущие материалы применяют для изготовления огнеупорной футеровочной массы и герметиков для высокотемпературной защиты металлических деталей и конструкций в производстве огнеупорных бетонов и др.

 Органические вяжущие материалы.

ІІ. Органические вяжущие материалы – вещества органического происхождения, способные переходить из пластичного состояния в твердое или малопластичное в результате полимеризации или поликонденсации. По сравнению с минеральными вяжущими материалами они менее хрупки, имеют большую прочность при растяжении. К ним относятся продукты, образующиеся при переработке нефти (асфальт, битум), продукт термического разложения древесины (деготь), а также синтетические термореактивные полиэфирные, эпоксидные, фенолоформальдегидные смолы. Применяют органические вяжущие материалы в строительстве дорог, мостов, полов производственных помещений, рулонных кровельных материалов, асфальтополимербетонов и др. (см. Битумные материалы).

Гипсовые вяжущие материалы

Воздушные Вяжущие материалы, получаемые на основе полуводного сульфата кальция либо безводного сульфата кальция (ангидритовые вяжущие). По условиям термической обработки, а также по скорости схватывания и твердения гипсовые вяжущие материалы делятся на 2 группы: низкообжиговые (быстросхватывающиеся и быстротвердеющие) - строительный и формовочный гипс, высокопрочный гипс, гипсоцементнопуццолановые вяжущие; высокообжиговые (медленно схватывающиеся и медленно твердеющие) - ангидритовый цемент, высокообжиговый гипс (эстрих-гипс).

Строительный гипс получают термической обработкой в варочных котлах, вращающихся печах и др. технологических установках при температуре 140-190°С дроблёного или предварительно измельченного в порошок природного гипса (гипсового камня). Начало схватывания гипсового теста наступает через 4-15 мин после затворения водой. Предел прочности строительного гипса при сжатии достигает 10Мн/м2 (100 кгс/см2). Строительный гипс применяется для производства гипсовых изделий (главным образом для внутренней частей зданий), а также для штукатурных и кладочных работ.

Формовочный гипс и высокопрочный гипс получают в основном теми же способами, что и строительный гипс, но из более чистого сырья; они отличаются повышенной прочностью, используются для изготовления различных форм и моделей в керамической и некоторых др. отраслях промышленности, а также для производства отделочных материалов и архитектурных деталей.

 Гипсоцементнопуццолановые вяжущие (ГЦПВ), предложенные советским ученым А. В. Волженским, получают смешиванием строительного гипса и др. видов гипсовых вяжущих с Портландцемент ом (или пуццолановым портландцементом) и кислой гидравлической добавкой (трепел, диатомит, вулканический пепел, трасс, туф, золы от сжигания бурых углей и др.). Эти смешанные вяжущие материалы отличаются от чистых Г. в. м. способностью к гидравлическому твердению и повышенной водостойкостью. Изделия из них имеют значительно меньшие пластические деформации, чем изготовленные из строительного гипса и др. гипсовых вяжущих. ГЦПВ обычно содержат 50-75% гипса, 15—25% пуццолановой добавки (с активностью по поглощению окиси кальция более 200-250 мг/г). Соотношение между портландцементом и пуццолановой добавкой, от которого зависит долговечность изделий, определяется по специальной методике.

Ангидритовый цемент изготовляют обжигом природного гипса при температуре 600-700 °С с последующим его измельчением совместно с добавками-катализаторами твердения (известь, бисульфат или сульфат натрия с железным или медным купоросом и пр.). Он используется для приготовления строительных растворов, бетонов, искусственного мрамора, декоративных изделий.

Высокообжиговый гипс (эстрих-гипс) получают обжигом природного гипса при температуре 800-1000°С с последующим тонким измельчением; применяется в тех же случаях, что и ангидритовый цемент. Изделия из эстрих-гипса, по сравнению с изделиями из строительного гипса, обладают более высокой водостойкостью и меньшей склонностью к пластическим деформациям.

Воздушная известь.

Известь известна человечеству не одно тысячелетие и все это время активно используется им в строительстве и многих других отраслях. Это объясняется доступностью сырья, простотой технологии и доста­точно хорошими свойствами извести.

Сырьем для получения извести служат широко распространенные осадочные горные породы: известняки, мел, доломиты, состоящие преимущественно из карбоната кальция (СаСО3). Если куски таких пород прокалить на огне, то карбонат кальция перейдет в оксид кальция:

СаСО3 → СаО + СО2

После прокаливания куски, теряя с углекислым газом 44 % своей массы, становятся легкими и пористыми. При смачивании водой они бурно реагируют с ней, превращаясь в тонкий порошок, а при избытке воды в пластичное тесто. Этот процесс, сопровождающийся сильным выделением теплоты и разогревом воды вплоть до кипения, называют гашением извести. Образующееся при избытке взятой воды пластичное тесто используют в качестве вяжущего. При испарении воды тесто загустевает и переходит в камневидное состояние. Недостаток извести — медленное твердение: процесс набора прочности твердею­щей известью растягивается на годы и десятилетия. В реальные сроки строительства прочность затвердевшей извести, как правило, не пре­вышает 0,5...2 МПа.

Производство. Сырье - карбонатные породы (известняки, мел, доломиты), содержащие не более 6...8 % глинистых примесей, обжи­гают в шахтных или вращающихся печах при температуре 1000... 1200° С. В процессе обжига СаСО3 и MgCO3, содержащиеся в исходной породе, разлагаются на оксиды кальция СаО и магния MgO и углекислый газ. Неравномерность обжига может привести к образованию в извести недожога и пережога.

Недожог (неразложившийся СаСО3), получающийся при слишком низкой температуре обжига, снижает качество извести, так как не гасится и не обладает вяжущими свойствами.

Пережог образуется при слишком высокой температуре обжига в результате сплавления СаО с примесями кремнезема и глинозема. Зерна пережога медленно гасятся и могут вызвать растрескивание и разрушение уже затвердевшего материала.

Куски обожженной извести -комовая известь - обычно подвер­гают гашению водой:

СаО + Н2О → Са(ОН)2 + 1160 кДж/кг

Выделяющаяся при гашении теплота резко повышает температуру извести и воды, которая может даже закипеть (поэтому негашеную известь называют кипелкой).

При гашении куски комовой извести увеличиваются в объеме и распадаются на мельчайшие (до 1 мкм) частицы.

В зависимости от количества взятой для гашения воды получают: гидратную известь - пушонку (35…40 % воды от массы извести, т. е. в количестве, необходимом для протекания реакции гидратации — про­цесса гашения); известковое тесто (воды в 3...4 раза больше, чем извести), известковое молоко (количество воды превышает теоретиче­ски необходимое в 8... 10 раз).

Виды воздушной извести. По содержанию оксидов кальция и магния воздушная известь бывает:

•  кальциевая -MgO не более 5 %;

•  магнезиальная -MgO> 5...20 %;

•  доломитовая -MgO > 20...40 %.

По виду поставляемого на строительство продукта воздушную известь подразделяют на негашеную комовую (кипелку), негашеную порошкообразную (молотую кипелку) и гидратную (гашеную, или пушонку).

Негашеная комовая известь представляет собой мелкопористые куски размером 5...10см, получаемые обжигом известняка. В зависи­мости от содержания, активных СаО + MgO и количества негасящихся зерен комовую известь разделяют на три сорта.

 По скорости гашения комовая известь бывает (таблица 3):

 Таблица 3. Виды извести

Вид извести

Время достижения максимальной температуры, мин

Быстрогасящаяся

Среднегасящаяся

Медленногасящаяся

<8

8...25

>25

Негашеную порошкообразную известь получают помолом комовой в шаровых мельницах в тонкий порошок. Часто в известь во время помола вводят активные добавки (гранулированные доменные шлаки, золы ТЭС и т. п.) в количестве 10...20 % от массы извести. Порошко­образная известь, как и комовая, делится на три сорта.

Преимущество порошкообразной извести перед комовой состоит в том, что при затворении водой она ведет себя подобно гипсовым вяжущим: сначала образует пластичное тесто, а через 20...40 мин схватывается. Это объясняется тем, что вода затворения, образующая тесто, частично расходуется на гашение извести.

При использовании порошкообразной извести воды берут 100...150 % от массы извести в зависимости от качества извести и количества активных добавок в ней. Определяют количество воды опытным путем.

Гидратная известь (пушонка) - тончайший белый порошок, получа­емый гашением извести, обычно в заводских условиях, небольшим количеством воды (несколько выше теоретически необходимого). При гашении в пушонку известь увеличивается в объеме в 2...2,5 раза. Насып­ная плотность пушонки - 400...450 кг/м3; влажность - не более 5 %.

Гашение извести можно производить как на строительстве объекта, так и централизованно. В последнем случае гашение совмещается с мокрым помолом непогасившихся частиц, что увеличивает выход извести и улучшает ее качество.

На строительстве известь гасят в гасильных ящиках (творилах). В ящик загружают комовую известь не более чем на 1/3 его высоты (толщина слоя обычно около 100 мм), поскольку при гашении известь увеличивается в объеме в 2,5...3,5 раза. Быстрогасящуюся известь заливают сразу большим количеством воды, чтобы не допустить пере­грева и кипения воды, медленногасящуюся — небольшими порциями, следя за тем, чтобы известь не охладилась. Из 1 кг извести в зависимости ох ее качества получается 2...2,5 л известкового теста. Этот показатель называют «выход теста».

 Воздушная известь - единственное вяжущее, которое превра­щается в тонкий порошок не только размолом, но и путем гашения водой.

Колоссальная удельная поверхность частиц Са(ОН)2 и их гидрофильность обусловливает большую водоудерживающую способность и пластичность известкового теста. После отстаивания известковое тесто содержит около 50% твердых частиц и 50% воды. Каждая частица окружена тонким слоем адсорбированной воды, играющей роль свое­образной смазки, что обеспечивает высокую пластичность известко­вого теста и смесей с использованием извести.

По окончании гашения жидкое известковое тесто через сетку сливают в известехранилище, где его выдерживают до тех пор, пока полностью не завершится процесс гашения (обычно не менее двух недель). Известковое тесто с размером непогасившихся зерен менее 0,6 мм можно применять сразу. Крупные непогасившиеся зерна опасны тем, что среди них могут быть пережженные зерна (пережог).

Содержание воды в известковом тесте не нормируется. Обычно в хорошо выдержанном тесте соотношение воды и извести около 1:1.

Твердение. Известковое тесто состоит из насыщенного водного раствора Са(ОН)2 и мельчайших нерастворившихся частиц извести; По мере испарения из него воды образуется пересыщенный раствор Са(ОН)2, из которого выпадают кристаллы, увеличивающие содержание твердой фазы. При этом происходит усадка твердеющей системы, которая в определенных условиях (например, при твердении известковой смеси на жестком основании — штукатурный слой) может вызвать растрескивание материала. Поэтому известь всегда применяют с заполнителями (например, известково-песчаные растворы) или в смеси с другими вяжущими для придания материалу пластичности.

Известковое тесто, защищенное от высыхания, неограниченно долго сохраняет пластичность, т. е. у такой извести «отсутствует» процесс схватывания. Затвердевшее известковое тесто при увлажнении вновь переходит в пластичное состояние (известь — неводостойкий материал).

Однако при длительном твердении (десятилетия) известь приобре­тает довольно высокую прочность и относительную водостойкость (например, в кладке старых зданий). Это объясняется тем, что на воздухе известь реагирует с углекислым газом, образуя нерастворимый в воде и довольно прочный карбонат кальция, т. е. как бы обратно переходит в известняк:

Са(ОН)2 + СО2 → СаСО3 + Н2О

Процесс этот очень длительный, и полной карбонизации извести практически не происходит.

Существует мнение, что при длительном контакте извести с квар­цевым песком в присутствии влаги между этими компонентами про­исходит взаимодействие с образованием контактного слоя из гидро­силикатов. Это так же повышает прочность и водостойкость бетонов и кирпичной кладки на извести, имеющих возраст более 200...300 лет.

Применение, транспортирование, хранение. Воздушную известь применяют для приготовления кладочных и штукатурных растворов как самостоятельное вяжущее, так и в смеси с цементом; при произ­водстве силикатного кирпича и силикатобетонных изделий; для полу­чения смешанных вяжущих (известково-шлаковых, известково-зольных и др.) и для красок.

Негашеную известь, особенно порошкообразную, при транспорти­ровании и хранении предохраняют от увлажнения. Порошкообразная известь - кипелка гасится даже влагой, содержащейся в воздухе. Мак­симальный срок хранения молотой извести в бумажных мешках 25 суток, в герметичной таре (металлические барабаны) — не ограничен.

Комовую известь транспортируют навалом в закрытых вагонах и автомашинах, порошкообразную - в бумажных мешках, а также в специальных автоцистернах. В таких же цистернах перевозят пушонку и известковое тесто.

Хранят комовую известь в сараях с деревянным полом, поднятым над землей на 30 см. Недопустимо попадание на известь воды, так как это может вызвать ее разогрев и пожар. На складах извести тушение пожара водой запрещается.

Основные понятия, которые необходимо знать после изучения материала данной лекции

Вяжущие вещества, строительный гипс, жидкое стекло, битумы, дегти, фосфогипс, борогипс, алебастр, магнезит, доломит

Вопросы для самоконтроля

1. Что представляют собой вяжущие вещества и как подразделяют по составу

2. Получение воздушного вяжущего вещества

3. Что представляет собой воздушная известь, классификация

4. Опишите процесс твердения.

5. Применение и хранение воздушной извести